
- NASA-CR-1961SO

Research on Knowledge Assisted Software Engineering (KASE)

and Development of a KASE Environment

Final Report / ,

,...J

NASA Grant NCC 2-7494

Edward Feigenbaum, Co-Principal Investigator
Richard Fikes, Co-Principal Investigator

H. Penny Nii, Project Leader
Sanjay Bhansali, Research Associate

Knowledge Systems Laboratory
Department of Computer Science

Stanford University

Introduction

The following report summarizes the results of two years of research on Knowledge-
Assisted Software Engineering (KASE) and the development of a KASE environment.
The project was initiated on 1 November 1991, and was initially planned as a three-year
effort. However, due to the loss of key personnel, and after consultation with the NASA
project monitor, the project will terminate after two years.

Research Objectives

The goals of the research were: (1) to develop a software design environment that will

enable software engineers to reuse extant software architectures and design knowledge,
and thereby reduce the cost of software development as well as reduce errors in the
software product; (2) to demonstrate the capability of the system and generality of the
approach in different application areas including one NASA application.

Approach

Our approach consisted of the following steps.

(1) Develop a framework for synthesizing software using generic software
architectures.

(2) Implement a set of domain-independent software tools to assist software
designers in creating application specific software systems based on the
framework.

(3) Acquire and represent generic architectures in different application areas as
well as the relevant customization knowledge needed to customize the generic
architecture for specific problem instances.

(4) EvaluatehowsynthesizingsystemsusingtheKASEapproachcompareswith
tradition_ methods.

(NASA-CR-194150) RESEARCH ON

KNOWLEDGE ASSISTED SOFTWARE

ENGINEERING (KASE) AND DEVELOPMENT
OF A KASE ENVIRONMENT Final

Technic,_| Report (Stanford Univ.)

4p

N94-70494

Unclas

Z9/61 01B2835



Accomplishments

The specific research results to date have been well documented in several technical
reports that appear in refereed conference proceedings and workshops (see bibliography);
the work has thus been extensively peer-reviewed and widely disseminated. In this report
the accomplishments are highlighted in bulletized form, with pointers to the literature.

Fiscal Year 1992

• Developed a general framework for designing software systems using generic
architectures. The framework identified the major knowledge components and their
representation, as well as the major processes involved in going from problem
requirements to a system design.

• Used the framework to rationally reconstruct the design of two different systems,

ELINT and HASP, using a common generic architecture and customization knowledge.
This work was fully implemented and demonstrated the application-specific design
support provided by KASE in a mixed-initiative and opportunistic design environment
(Bhansali, 1992b; Bhansali & Nii, 1992a; Bhansali & Nii, 1992b). This work was
presented and demonstrated to NASA personnel in May 1992.

• Extended the work on redesign support in KASE. Specific extensions include I) a
uniform representation mechanism for customization knowledge that provides plausible
alternatives, default suggestions, and rationales for all design decisions (Bhansali,
1993); 2) dependency maintenance between design decisions allowing retraction of
earlier design decisions with minimal impact on the rest of the design (Bhansali,
1992a); and 3) a scheme for providing flexible control for checking various kinds of
constraints at any point in the design process (Nakano & Bhansali, 1993a).

• Enhanced the user interface, diagrammatic, and editing tools to facilitate the acquisition
of domain models and the manipulation of an architectural design. Began work on
using KASE to provide intelligent support to perform maintenance and future
enhancements of KASE's own user interface.

• Identified a new domain, concerned with the analysis of radio occultation data received
from planetary spacecraft, for application of KASE ideas. Finished representing the
architectural design of a radio occultation data analysis system. Began work on 1)
adding customization knowledge for instantiating parts of the architectural design to
conform to different requirements; 2) adding transformation rules to convert certain
classes of problems (involving the use of the NAIF library routines) to executable code.

Fiscal Year 1993

• Demonstrated the use of KASE in maintaining the Diagram-Manager subsystem of
KASE. (Bhansali, 1993). A generic architecture of the Diagram Manager was
represented in KASE, and design rules were encoded for constructing new kinds of

layout diagrams based on properties of the objects and relations being depicted. Using
these design rules, new layout diagrams were created much more efficiently than
before, and by members of the KASE project other than the assigned programmer.

• Acquired the relevant problem-class model (objects, relations, operation definitions) for

a subset of the radio occultation data analysis architecture. In order to limit the scope
of the project to reasonable bounds, a problem-class was chosen that involved the



computation of the frequency shift of an observed signal. Various problem
requirementsanddesignparametersthat affect thesolution to problemsbelongingto
this class were identified and representedin KASE. This work was done in
collaborationwith JoeTwicken,amemberof theRadioSciencegroup,EE department,
StanfordUniversity.

• A set of transformationrules were written in Mathematica to convert a high-level
specification of problems belonging to the above problem class into an intermediate
language. The transformation rules use information about problem requirements and
design parameters during refinement.

• A translator that converts the intermediate language into FORTRAN was implemented.

• The system was used to generate a solution for a problem instance belonging to the
chosen problem class. The solution obtained using KASE was compared with the
solution written by a human programmer (Joe Twicken). The results of the comparison
showed that:

(1) the accuracy of solution generated by KASE is comparable to that produced by
the human (the values computed by KASE were off by about 0.0018 %)

(2) the length of the program produced by KASE was considerably more than that
of the human,

(3) the code produced by KASE was slightly less efficient than that of the human.

The second and third results are related and can be easily improved by implementing a
set of domain-independent optimizations of the code produced (e.g. replacing two or
more subroutine calls by one). The results of this work have not yet been published,
but will be described in a forthcoming technical report.

• Completed implementation of the Constraint-Checker subsystem of KASE begun the
previous year. The constraint-checker has been empirically evaluated on existing and

new software architectures. Details of the constraint-checking algorithm have been
reported elsewhere (Bhansali, 1993; Nakano & Bhansali, 1993b).



Bibliography

Bhansali (1993). Synthesizing software using generic architectures (submitted to
Automating Software Engineering journal).

Bhansali, S. (1992a). Generic software architecture based redesign. In AAAI Spring
Symposium on Computational Considerations in Supporting Incremental Modification
and Reuse, (pp. 53-58). Stanford, CA:

Bhansali, S. (1992b). The KASE approach to domain-specific software systems. In AAAI
Workshop on Automating Software Design, (pp. 11-15). San Jose, CA:

Bhansali, S. (1993). Architecture-driven Reuse of Code in KASE. In Fifth International
Conference on Software Engineering and Knowledge Engineering. San Francisco Bay:
Knowledge Systems Institute (KSL 93-35).

Bhansali, S., & Nii, H. P. (1992a). KASE: An integrated environment for software
design. In 2nd International Conference on Artificial Intelligence in Design, (pp. 371-
389). Pittsburgh, PA (KSL 91-73)

Bhansali, S., & Nii, H. P. (1992b). Software Design by Reusing Architectures. In 7th
Knowledge-Based Software Engineering Conference, (pp. 100-109). McLean, Virginia:
IEEE Computer Society Press. (KSL 92-38)

Nakano, G., & Bhansali, S. (1993a). Flexible control mechanism in a consistency
maintenance system. In IEEE Pacific Rim Conference on Communications, Computers,
and Signal Processing. Victoria, British Columbia, Canada (KSL 93-27)

Nakano, G., & Bhansali, S. (1993b). A knowledge-based approach for consistency
checking mechanism in software design. In Proceedings of the 6th Florida AI Research
Symposium, (pp. 157-165). Fr. Lauderdale, FL (KSL 93-26)


